Diagnosis of Stroke and Diabetes Mellitus With Classification Techniques Using Decision Tree Method


  • Mudafiq Riyan Pratama Politeknik Negeri Jember
  • Arinda Lironika Suryana Politeknik Negeri Jember
  • Gamasiano Alfiansyah Politeknik Negeri Jember
  • Zora Olivia Politeknik Negeri Jember
  • Ida Nurmawati Politeknik Negeri Jember
  • Prawidya Destarianto Politeknik Negeri Jember




Classification, Decision Tree, Diabetes Mellitus, Stroke


: Stroke is a cerebral vascular disease characterized by the death of brain tissue that occurs due to reduced blood and oxygen flow to the brain. Ischemic stroke is associated with diabetes mellitus, therefore it is important to identify the risk factors that cause stroke and DM by diagnostic cause of the disease. This study aimed to classify and compare accuracy tests on medical record data sets for stroke and DM. This study analyzed the diagnosis of stroke and DM using Decision Tree. The risk factors consisted of gender, age, blood pressure, nutritional status, smoking, history of DM, and history of hypertension. The results of the analysis using the Decision Tree method showed that the accuracy rate was 86.67%, which means that the modeling has a good level of correctness of the prediction results. We conclude that the Decision Tree method was an accurate method for detecting stroke and DM.


A. Rohman, “Application of the Adaboost-Based C4.5 Algorithm for Heart Disease Prediction,” Pandanaran Univ. Sci. Mag., vol. 11, no. 26, pp. 40–49, 2013.

N. Camerlingo, M. Vettoretti, S. Del Favero, A. Facchinetti, P. Choudhary, and G. Sparacino, “Generation of post-meal insulin correction boluses in type 1 diabetes simulation models for in-silico clinical trials: More realistic scenarios obtained using a decision tree approach,” Comput. Methods Programs Biomed., vol. 221, p. 106862, 2022, doi: 10.1016/j.cmpb.2022.106862.

D. R. Ente, S. A. Thamrin, S. Arifin, H. Kuswanto, and A. Andreza, “Classification Of Factors Causing Diabetes Mellitus At Unhas Hospital Using The C4.5 Algorithm,” Indones. J. Stat. Its Appl., vol. 4, no. 1, pp. 80–88, 2020, doi: 10.29244/ijsa.v4i1.330.

V. L. Feigin, “Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019,” Lancet Neurol., vol. 20, no. 10, pp. 1–26, 2021, doi: 10.1016/S1474-4422(21)00252-0.

M. Katan and A. Luft, “Global Burden of Stroke,” in Seminars in Neurology, 2018, vol. 38, pp. 208–211.

V. Azzahra and S. Ronoatmodjo, “Factors Associated with Stroke in Population Aged >15 Years in Special Region of Yogyakarta (Analysis of Basic Health Research 2018),” J. Epidemiol. Kesehat. Indones., vol. 6, no. 2, pp. 91–96, 2023, doi: 10.7454/epidkes.v6i2.6508.

N. Antonios and S. Silliman, “Diabetes mellitus and stroke,” Northeast Florida Med., pp. 17–22, 2005.

B. Daneshfard, S. Izadi, A. Shariat, M. A. Toudaji, Z. Beyzavi, and L. Niknam, “Epidemiology of stroke in Shiraz, Iran.,” Iran. J. Neurol., vol. 14, no. 3, pp. 158–63, 2015.

J. Shou, L. Zhou, S. Zhu, and X. Zhang, “Diabetes is an Independent Risk Factor for Stroke Recurrence in Stroke Patients: A Meta-analysis,” J. Stroke Cerebrovasc. Dis., vol. 24, no. 9, pp. 1961–1968, 2015, doi: 10.1016/j.jstrokecerebrovasdis.2015.04.004.

R. Chen, B. Ovbiagele, and W. Feng, “Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes,” Am J Med Sci., vol. 351, no. 4, pp. 380–386, 2016, doi: 10.1016/j.amjms.2016.01.011.Diabetes.

S. U. Putri, E. Irawan, and F. Rizky, “Implementation of Data Mining to Predict Diabetes Using the C4.5 Algorithm,” J. Appl. Inf. Syst. (Computers Manag., vol. 2, no. 1, pp. 39–46, 2021.

S. J. Murphy and D. J. Werring, “Stroke: causes and clinical features,” Medicine (Baltimore)., vol. 48, no. 9, pp. 561–566, Sep. 2020, doi: 10.1016/j.mpmed.2020.06.002.

S. Parikh, S. Parekh, and N. Vaghela, “Impact of stroke on quality of life and functional independence,” Natl. J. Physiol. Pharm. Pharmacol., vol. 8, no. 12, pp. 1595–1598, 2018, doi: 10.5455/njppp.2018.8.0723807092018.

T. Dudkina, I. Meniailov, K. Bazilevych, S. Krivtsov, and A. Tkachenko, “Classification and Prediction of Diabetes Disease using Decision Tree Method,” in IT&AS 2021: Symposium on Information Technologies & Applied Sciences, 2021, pp. 1–10. doi: 10.1109/ELIT53502.2021.9501151.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2012.

A. Iyer, J. S, and R. Sumbaly, “Diagnosis of Diabetes Using Classification Mining Techniques,” Int. J. Data Min. Knowl. Manag. Process, vol. 5, no. 1, pp. 01–14, 2015, doi: 10.5121/ijdkp.2015.5101.

A. Bisri and R. S. Wahono, “Application Of Adaboost To Resolve Class Imbalances in Determining Student Graduation Using The Decision Tree Method,” J. Intell. Syst., vol. 1, no. 1, pp. 27–32, 2015.

A. K. Hamoud, A. S. Hashim, and W. A. Awadh, “Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis,” Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. 2, pp. 26–31, 2018, doi: 10.9781/ijimai.2018.02.004




How to Cite

Pratama, M. R., Suryana, A. L., Alfiansyah, G., Olivia, Z., Nurmawati, I., & Destarianto, P. (2024). Diagnosis of Stroke and Diabetes Mellitus With Classification Techniques Using Decision Tree Method. International Journal of Health and Information System, 2(1), 1–8. https://doi.org/10.47134/ijhis.v2i1.36




Most read articles by the same author(s)

1 2 > >>