Sensitivity Test of Herbal Extracts of Jarem Grass (Grona triflora), Meniran (Phyllanthus niruri), and Patikan Kebo (Euphorbia hirta) Against Terrestrial Bacteria
DOI:
https://doi.org/10.47134/ijhis.v2i2.47Keywords:
Sensitivity, Plant Extract, Inhibition zoneAbstract
Sensitivity is the ability of a medicinal substance to kill or inhibit the growth of microbes. Meanwhile, intermediate is a condition where there is a shift from a sensitive state to a completely resistant state. Method research was experimental and several procedural processes were sterilization, making of MHA media, bacterial cultivation, and extract preparation. Result showed that the highest diameter of the inhibition zone for the extract was found in the Grona triflora extract in group 1, which was 35 mm and followed by Phyllanthus niruri extract in group 6 which was 29 mm. Furthermore, the inhibition zone diameter of positive control, ciprofloxacin and tetracyclines, were 40 mm. The active ingredients of Grona triflora are flavonoids, alkoloids, and phenolics and the components of meniran that are flavonoid and tannin compounds are estimated as the inhibition factor that cause the inhibition zone in the media. Finally, the inhibitory zone of grass jarem herb extract (Grona triflora) (EGT) and the inhibitory zone for extract of Phyllantus niruri (EPN) are called to have the similar level of sensitivity when compared with several types of antibiotics ciproploxacin and tetracycline which have the sensitive level ≥ 21 mm.
References
[1] Atlas, R. M., 2004, ’Handbook of Microbiological Media’. in CRC Press.
[2] Pelczar, M. J., dan Chan, E. C. S., 1986, Dasar-Dasar Mikrobiologi, Universitas Indonesia, UI-Press, Jakarta.
[3] Igbinosa, E.O., Ogofure, A.G.., & Beshiru, A., 2020. Evaluation of Different Agar Media for the Antibiotic Susceptibility Testing of Some Selected Bacterial Pathogens. J. Basic Med. Sci. Vol 8, No 1 – 2.
[4] Zaid, B, Jildeh, Patrick, H., Wagner, Michael, J., Schöning, 2021. Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020. Phys. Status Solidi A. 218, 2000732.
[5] Syeda Q. A., Ale Z., Baquar S. N., Shahjahan S., and Rabia B., 2010. Resistance Pattern of Ciprofloxacin Against Different Pathogens. Oman Med J. 25(4): 294–298.
[6] Bhairavi, V.A., Vidya, S.L. & Sathishkumar, R., 2023. Identification of effective plant extracts against candidiasis: an in silico and in vitro approach. Futur J Pharm Sci 9, 38.
[7] Socfindo conservation, 2024. Three-flower Ticktrefoil. [Cited 16 June 2024] [Available from : https://www.socfindoconservation.co.id/plant/478?lang=en]Waluyo, L., 2009, Mikrobiologi Lingkungan, Malang: UMM Press.
[8] Sudewo, B., 2012. Basmi kanker dengan herbal. Visi media : Jakarta.
[9] Sudarno, F., Setiorini dan Suprapto. 2011. Efektivitas ekstrak tanaman meniran (Phyllanthus niruri) sebagai antibakteri secara in vitro. Edwardsiella
[10] Yixixie , Yang, W. , Fentang , Chen, X.Q., Ren, L., 2015. Aktivitas Antibakteri Flavonoid: Hubungan dan Mekanisme Struktur-Aktivitas. Kimia Med Curr. 22(1):132-49.
[11] Hendra R, Ahmad S, Sukari A, Shukor MY, Oskoueian E. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int J Mol Sci. 2011;12: 3422-3431.
[12] Cushnie, T.P.Tim. Lamb, Andrew J. Amtimicrobial Activity of Flavonoids. International Journal of Antimicrobial AgentsI. 2005;26: 343-356.
[13] Nuria, maulita cut, Faizaitun, Arvin, Sumantri, Uji Aktivitas Antibakteri Ekstrak Etanol Daun Jarak Pagar (Jatropha Curcas L) Terhadap Bakteri Staphylococcus Aureus Atcc 25923, Escherichia Coli Atcc 25922, Dan Salmonella Typhi Atcc 1408, Mediagro.2009;5(2):26–37.
[14] Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;24:e00370.
[15] Božič M., Gorgieva S., Kokol V. Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohyd. Polym. 2012;89:854–864
[16] Kim T.J., Silva J.L., Kim M.K., Jung Y.S. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chem. 2010;118:740–764.
[17] Zhang Y., Su Y., Peng J., Zhao X., Liu J., Zhao J., Jiang Z. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. J. Membr. Sci. 2013;429:235–242.
[18] Gómez-Taylor Corominas B., García Mateo J.V., Lahuerta Zamora L., Martínez Calatayud J. Determination of tannic acid by direct chemiluminescence in a FIA assembly. Talanta. 2002;58:1243–1251.
[19] Bouki E., Dimitriadis V.K., Kaloyianni M., Dailianis S. Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium. Mar. Environ. Res.
[20] Rivero S., García M.A., Pinotti A. Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohyd. Polym. 2010;82:270–276.
[21] Gülçin İ., Huyut Z., Elmastaş M., Aboul-Enein H. Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010;3:43–53.
[22] Uyama H. Artificial polymeric flavonoids: Synthesis and applications. Macromol. Biosci. 2007;7:410–422.
[23] Abbas S.R., Sabir M.S., Ahmad S.D., Boligon A.A., Athayde M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum) Food Chem. 2014;147:10–16.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lale Syifaun Nufus, Andy Susbandiyah Ifada, Nur Radiah, Khairil Pahmi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.