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Abstract: Human-Computer Interaction (HCI) becomes a solution to help humans connect with 

computers. Research and tools related to HCI have been developed by many researchers. HCI is 

able to help humans connect between humans and computers and humans with humans at a 

considerable distance. One of HCI model is applied to the MyoWare tool that can capture hand 

muscle movements using an electromyograph (EMG) sensor. This article describes how to assemble 

and identify the raw data generated from the MyoWare tool. Using MyoWare on the hand could 

produce EMG data output. MyoWare only used the EMG sensor and generated data in the form of 

Envelope EMG and Raw EMG which differed in scale and size. This required a extraction features 

process to make the data uniform. This study uses the Moment Invariant method to extract features 

and min-max to normalize each data generated on the MyoWare sensor. Testing was done by doing 

simple hand movements. The test results showed that the differences in gestures were recognized 

well even though they were performed in different positions.  
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1. Introduction 

The development of technology in the field of Human-Computer Interaction (HCI) 

has a tremendous impact, especially in the field of hand gesture recognition. Nowadays, 

research on hand gesture recognition such as virtual reality, robotics, computer games 

(animated), remote control, the introduction of sign language, and more has been done in 

various fields. The development of these technologies enables people to interact and build 

good communication between humans and machines [1]. 

In addition, the development of computerized hand gesture recognition is an 

important requirement in the industrial era 4.0, especially during the COVID-19 

pandemic. The pandemic has made people more concerned about health. Hence, many 

researchers have conducted several studies and approaches to health surveillance using 

hand gesture recognition technology. At this time, hand gesture recognition technology 

is very closely related to daily activities. It is a useful solution to knowing and monitoring 

the state of human bodies.  

There are various developments of HCI technology for hand gesture recognition, 

such as the use of smartwatches to determine the heart rate in the blood vessels on the 

wrist [2], The use of Myo Armband aims to assist deaf communication using a sign 

language [3], and hand and arm strength recognition tools are developed to monitor the 

condition of users and physiotherapy patients [1]. The various types of approaches in 

hand gesture recognition technology aim to help humans to connect and control their 

health through HCI. 
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HCI technology in the health sector have been researched, especially in post-stroke 

patients who seek for treatment or therapy [4]. Previous research found that muscle tone 

in post-stroke patients increased and caused muscle spasticity. Muscle spasticity causes 

stiffness, pain, and difficulty moving, and it will affect the normal movement of post-

stroke patients [5]. In addition, increased muscle tone is a sign to not optimal therapy in 

post-stroke patients. 

Based on the issues, a prototype device was assembled in the form of an 

electromyograph (EMG) sensor to help treat post-stroke patients [6]. The novelty of this 

research is how we can measure and predict the movement muscle on human arm to help 

stroke patients. The prototype of the device is used to improve the quality of spasticity 

treatment by finding the pattern of the EMG sensor performance[4]. However, at this 

stage, this study aimed to describe the tool development process and measure muscle 

strengths in a normal human arm. This study also aimed to create a tool that can be used 

in future research on post-stroke patients.  

2. Materials and Methods 

This paper aimed to find out the performance of the MyoWare raft tool and the EMG 

sensor data output . It will also inform the basis for further research on a technology for 

detecting muscle tone with easy use by therapists and patients' families. In this section, a 

device design of MyoWare muscle sensor kit and its evaluation were explained along with 

how it affects hand movements. 

2.1. Related Work 

A. F. Ruiz-olaya [7] predicted that gesticulation can be detected using pattern 

recognition through the biological signal from the EMG sensor. This study compares two 

experiment results of hand gesture recognition algorithm based on the EMG sensor. That 

algorithm used information-generated kinetics, and EMG data were better for 

classifications of five hand movements rather than the use of EMG data. 

M. Sathiyanarayanan [1] demonstrated the use of the MYO armband for 

physiotherapeutic treatment. This study analyzed the EMG sensor on MYO diagnostics to 

detect abnormalities in hand movements. The test was conducted on 24 medical students 

using the SUS questionnaire. This study was an alternative way to support the interactive 

physiotherapy analysis and help better understand the entire myocardial system with 

early diagnosis. 

2.2. Design System 

  

Figure 1. Design Hand Gesture Recognition System 
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Figure 1 shows the system design. This study used a moment invariant feature which is 

an extraction method and min-max normalization  

2.3. MyoWare Muscle Sensor Kit 

 

 

(a) (b) 

 

 
(c) (d) 

Figure 2. (a) MyoWare muscle sensor tools; (b) Sensor Layout; (c) Setup Configuration MyoWare 

on Arduino; (d) MyoWare position when use on bicep.  

Muscle activation via electric potential or electromyography (EMG) has traditionally 

been measured for diagnosis of neuromuscular disorders in medical research [8]. 

However, with the advent of ever shrinking yet more powerful microcontrollers and 

integrated circuits, EMG circuits and sensors have contbuted to prosthetics, robotics, and 

other control systems [9][10][11][12]. 

2.4. Hand Gesture Experiments 

These experiments used some hand gestures following dynamic movements that 

received different treatment. This step aimed to identify patterns, the influence of the 

movement against the existing sensors on the MyoWare and feature extraction. Dynamic 

movement is a movement of the right and left (radial-deviation), up and down (flexion-

extension), and pronation-supination. The movement was used to measure speed, 

direction, and position contained in MyoWare as shown in Figure 3. 
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Figure 3. Hand gestures used in the experiment 

2.5. Proposed Method 

The measurement results of hand movement showed nonuniformity sensor data both 

in scale and size. When nonuniform data were used directly for the recognition process, a 

lot of errors happened. Errors were caused by ambiguous movement, sensor failure, short 

measurement, or early measurement failures [13] The data showed inconsistent sizes and 

scales. Signal data were not easy to translate, and the extraction process was required to 

be a feature vector. 

 

Figure 4. Raw Data EMG Sensor 

Figure 4 shows the chart patterns of muscle contraction obtained from the EMG sensor. 

The data were raw data that required treatment prior extraction into feature vectors. In 

mathematical terms, the raw data are shown in the formula (1). 
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EMG sensor Formula 

𝑫𝒎 = ∑ [

𝒗𝒆𝒎𝒈𝟏𝒊
𝒗𝒆𝒎𝒈𝟐𝒊

… 𝒗𝒆𝒎𝒈𝟖𝒊

⋮ ⋮ ⋮ ⋮
𝒗𝒆𝒎𝒈𝟏𝒏

𝒗𝒆𝒎𝒈𝟐𝒏
… 𝒗𝒆𝒎𝒈𝟖𝒏

]𝒏
𝒊=𝟏       (1) 

Where: 

𝑫𝒎 = data from EMG sensor  

𝒗 = measurement value 

𝒏 = data size 

2.5.1. Min-Max Method 

The sensor data produced were not consistent with the scale, thus requiring the 

process of normalization. This study used the Min-Max method for data normalization. 

𝑛𝑒𝑤𝑑𝑎𝑡𝑎 =  
1

max − 𝑚𝑖𝑛
𝑥(𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛)       (2) 

Where: 

𝑚𝑎𝑥 = maximum  value of 𝑣 

𝑚𝑖𝑛 = minimum value of 𝑣 

This method can exert the balance between the values of the comparison data. No 

data were dominant over others. Data normalization was performed because the data 

obtained from EMG generated 2-dimensional patterns with different data values [14]. 

2.5.2. Moment Invariant Method 

Extraction feature in this study was invariant moment, a scalar value that captures 

a significant feature. This value provided object’s characteristics that uniquely represent 

the shape. Using the moment invariant method, this study aimed to describe the object 

with invariant, insensitive to a certain deformation. As a result, it could provide enough 

power to recognize objects from different classes [15]. The next process was to form 

feature vectors by calculating the mean, median, standard deviation, and skewness of 

each axis in the sensor data. 

𝑋𝐷(𝑚)
=

∑ 𝐷(𝑚)
𝑗
𝑖=1

𝑛
         (3) 

𝑀𝑒𝐷(𝑚)
=

(𝑛+1)

2
         (4) 

𝑆𝐷(𝑚)
= √∑ (𝑣𝑖−𝑋)2

𝑗
𝑖=1

𝑛−1
         (5) 

𝑆𝑘(𝑚)
= √∑ (𝑣𝑖−𝑋)3

𝑗
𝑖=1

𝑛−1
         (6) 

Where: 

𝑛  = data size 

𝑋𝐷(𝑚)
 = mean for each data sensor 

𝑀𝑒𝐷(𝑚)
 = median for each data sensor 

𝑆𝐷(𝑚)
 = standard deviation for each sensor 

𝑆𝑘(𝑚)
 = skewness for each data sensor 

The results of the calculation (3), (4), (5), and (6) produced a data model with 84 

bins for hand gestures. 
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𝐷𝑀𝑚 =

[
 
 
 
 𝑋𝑒𝑚𝑔1 𝑋𝑒𝑚𝑔2 … 𝑋𝑒𝑚𝑔8

𝑀𝑒𝑒𝑚𝑔1 𝑀𝑒𝑒𝑚𝑔2 … 𝑀𝑒𝑒𝑚𝑔8

𝑆𝑑𝑒𝑚𝑔1 𝑆𝑑𝑒𝑚𝑔2 … 𝑆𝑑𝑒𝑚𝑔8

𝑆𝑘𝑒𝑚𝑔1 𝑆𝑘𝑒𝑚𝑔2 … 𝑆𝑘𝑒𝑚𝑔8 ]
 
 
 
 

      (7) 

The next step was to measure whether the feature vectors already represented a 

hand gesture or not. The calculation of the formulas (8) and (9) showed sensitive data 

across various hand gestures  

𝑅 =
∑ (𝐷𝑀(𝑎,𝑔,𝑜,𝑒,𝑚)𝑖

−𝐷𝑀(𝑎,𝑔,𝑜,𝑒,𝑚)𝑖+1
)

𝑗
𝑖

𝑛
       (8) 

𝑅𝑜𝑏𝑢𝑠𝑡 = {
1;
0;

−1 < 𝑅 < +1
𝑒𝑙𝑠𝑒

         (9) 

 

Where: 

𝑅  = differential of data  

𝐷𝑀(𝑚) = feature vector 

3. Results and Discussion 

3.1. Flexion-Extension 

 

Figure 5. Feature vector for EMG flexion-extension 

 Figure 5 shows the feature vector of each sensor. This study found differences 

in the patterns of the movements. The feature vectors could identify different movements 

that could be robust to their positions. 

3.2. Radial-Ulnar Deviation 
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Figure 6. Feature vector for EMG radial-ulnar deviation 

Figure 6 shows that the data produced different patterns. The difference in 

movement affects the data patterns. 

3.3. Pronation-Supination 

 

Figure 7. Feature vector for EMG data pronation-supination 

Figure 7 shows that the data generated the same patterns. The feature vector could 

recognize the same movements although the position and direction were different. 

4. Conclusions 

Based on the method proposed and variations in hand motion, MyoWare recognized 

movements whose positions and directions were the same, except movements (robust). 

This technology also recognized the same hand movements in different directions. The 

use of the moment invariant method as a feature extraction was still powerful enough for 

the technology to recognize robust hand movements. In the next development, MyoWare 

and the moment invariant method can be used to help treat post-stroke patients through 

hand movement recognition. 
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